424 research outputs found

    Confinement, quark mass functions, and spontaneous chiral symmetry breaking in Minkowski space

    Full text link
    We formulate the covariant equations for quark-antiquark bound states in Minkowski space in the framework of the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We show that these equations are charge-conjugation invariant, and that in the chiral limit of vanishing bare quark mass, a massless pseudoscalar bound state is produced in a Nambu-Jona-Lasinio (NJL) mechanism, which is associated with the Goldstone boson of spontaneous chiral symmetry breaking. In this introductory paper, we test the formalism by using a simplified kernel consisting of a momentum-space delta-function with a vector Lorentz structure, to which one adds a mixed scalar and vector confining interaction. The scalar part of the confining interaction is not chirally invariant by itself, but decouples from the equations in the chiral limit and therefore allows the NJL mechanism to work. With this model we calculate the quark mass function, and we compare our Minkowski-space results to lattice QCD data obtained in Euclidean space. In a companion paper, we apply this formalism to a calculation of the pion form factor.Comment: 17 pages, 12 figures, version published in Phys. Rev.

    Pion electromagnetic form factor in the Covariant Spectator Theory

    Full text link
    The pion electromagnetic form factor at spacelike momentum transfer is calculated in relativistic impulse approximation using the Covariant Spectator Theory. The same dressed quark mass function and the equation for the pion bound-state vertex function as discussed in the companion paper are used for the calculation, together with a dressed quark current that satisfies the Ward-Takahashi identity. The results obtained for the pion form factor are in agreement with experimental data, they exhibit the typical monopole behavior at high-momentum transfer, and they satisfy some remarkable scaling relations.Comment: 11 pages, 8 figures, version published in Phys. Rev.

    Covariant spectator theory of np scattering: Phase shifts obtained from precision fits to data below 350 MeV

    Get PDF
    Using the covariant spectator theory (CST), we present two one boson exchange kernels that have been successfully adjusted to fit the 2007 world np data (containing 3788 data) below 350 MeV. One model (which we designate WJC-1) has 27 parameters and fits with a chi2/N = 1.06. The other model (designated WJC-2) has only 15 parameters and fits with a chi2/N = 1.12. Both of these models also reproduce the experimental triton binding energy without introducing additional irreducible three-nucleon forces. One result of this work is a new phase shift analysis, updated for all data until 2006, which is useful even if one does not work within the CST. In carrying out these fits we have reviewed the entire data base, adding new data not previously used in other high precision fits and restoring some data omitted in previous fits. A full discussion and evaluation of the 2007 data base is presented.Comment: 43 pages, 27 figures, and 13 table

    Quark mass function from a one-gluon-exchange-type interaction in Minkowski space

    Get PDF
    We present first results for the quark mass function in Minkowski space in both the spacelike and timelike regions calculated from the same quark-antiquark interaction kernel used in the latest meson calculations using the Gross equation. This kernel consists of a Lorentz vector effective one-gluon- exchange-type interaction, a vector constant, and a mixed scalar-pseudoscalar covariant linear confining interaction that does not contribute to the mass function. We analyze the gauge dependence of our results, prove the gauge independence of the constituent quark mass and mass gap equation, and identify the Yennie gauge as the appropriate gauge to be used in CST calculations. We compare our results in the spacelike region to lattice QCD data and find good agreement.Fundação para a Ciência e a Tecnologia (FCT), U.S. Department of Energ

    Chiral-symmetry breaking and pion structure in the Covariant Spectator Theory

    Get PDF
    We introduce a covariant approach in Minkowski space for the description of quarks and mesons that exhibits both chiral-symmetry breaking and confinement. In a simple model for the interquark interaction the quark mass function is obtained and used in the calculation of the pion form factor. We study the effects of the mass function and of the different quark pole contributions on the pion form factor.Comment: 6 pages, 5 figures, presented at Excited QCD 201

    Charge-conjugation symmetric complete impulse approximation for the pion electromagnetic form factor in the covariant spectator theory

    Get PDF
    The pion form factor is calculated in the framework of the charge-conjugation invariant covariant spectator theory. This formalism is established in Minkowski space, and the calculation is set up in momentum space. In a previous calculation we included only the leading pole coming from the spectator quark (referred to as the relativistic impulse approximation). In this paper we also include the contributions from the poles of the quark which interacts with the photon and average over all poles in both the upper and lower half-planes in order to preserve charge conjugation invariance (referred to as the C-symmetric complete impulse approximation). We find that for small pion mass these contributions are significant at all values of the four-momentum transfer Q(2) but, surprisingly, do not alter the shape obtained from the spectator poles alone

    Quark Mass Function from an OGE-type Interaction in Minkowski Space

    Get PDF
    We present results for the quark mass function in Minkowski space calculated from an interaction kernel that consists of an effective one-gluon-exchange and a constant interaction. We analyze the gauge dependence of our results and compare them in the spacelike region to the available lattice QCD data.Fundação para a Ciência e a Tecnologia (FCT), United States Department of Energ
    corecore